Final Exam MTH 221 , Summer 2011 at 12:30

Ayman Badawi

QUESTION 1. $($ Each $=\mathbf{4}$ points, Total $=76$ points $)$ Circle the correct letter.
(i) Given A is 2×2 and $A \quad \overrightarrow{2 R_{1}+R_{2} \rightarrow R_{2}} \quad B$. Let E be an elementary matrix such that $E B=A$. Then $E=$
a) $\left[\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right]$
b) $\left[\begin{array}{cc}1 & 0 \\ 0.5 & 1\end{array}\right]$
c) $\left[\begin{array}{cc}0.5 & 0 \\ 0 & 1\end{array}\right]$
d) None is correct
(ii) Let $A\left[\begin{array}{ccc}1 & 3 & 2 \\ -1 & b & b \\ -2 & -6 & b\end{array}\right]$ such that $A X=\left[\begin{array}{c}4 \\ 6 \\ -8\end{array}\right]$ has infinitely many solution. Then $b=$
a) -3 or -4
b) any real number except -3 and -4
c) -3
d) -4
e) None is correct
(iii) Let $A=\left[\begin{array}{ccc}1 & 4 & a \\ -1 & 2 & b \\ 2 & 8 & c\end{array}\right]$ and let $B=$ First column of $\mathrm{A}+$ Second Column of A. Given $x_{1}=-3, x_{2}=0.5, x_{3}=1$ is a solution to the system $A X=B$. Then
a) $\operatorname{det}(A) \neq 0$
b) The system $A X=B$ has infinitely many solutions
c) A is invertible
d) (a) and (c) are correct
(iv) Let $A, B, x_{1}, x_{2}, x_{3}$ as above (as in PART iii). The third column of A is
a) $\left[\begin{array}{c}5 \\ 1 \\ 10\end{array}\right]$
b) $\left[\begin{array}{l}3 \\ 0 \\ 6\end{array}\right]$
c) $\left[\begin{array}{c}6 \\ -3 \\ 12\end{array}\right]$
d) None is correct
(v) Let $A^{-1}=\left[\begin{array}{ccc}4 & 2 & -2 \\ -4 & -3 & 0 \\ 2 & 1 & 0\end{array}\right]$ Then the solution to the system $A X=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$ is
a) $x_{1}=6, x_{2}=-7, x_{3}=3$
b) $x_{1}=4, x_{2}=-4, x_{3}=2$
c) $x_{1}=10, x_{2}=-11, x_{3}=5$
d) None is correct
(vi) Let A^{-1} as above. Then $(3,1)$-entry of A is
a) 2.5
b) -0.5
-2.5
d) 0.5
e) None is correct
(vii) One of the following is true:
a) $\left\{A \in R_{2 \times 2} \mid \operatorname{det}(A)=0\right\}$ is a subspace of $R_{2 \times 2}$
b) $\left\{(a, b, c) \in R^{3} \mid a, b, c \in R\right.$ and $a+b=$
0 or $a+c=0\}$ is a subspace of R^{3}
c) $\left\{\left(a, b^{2}\right) \mid a, b \in R\right\}$ is a subspace of R^{2}
d) None is correct
(viii) Let A be 3×3 matrix and $C=A+I_{3}$ such that $x_{1}=2, x_{2}=1, x_{3}=0$ is a solution to the system $A X=\left[\begin{array}{l}1 \\ 3 \\ 1\end{array}\right]$ and $x_{1}=-2, x_{2}=1, x_{3}=0$ is a solution to the system $C X=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$. The second column of A is
a) $\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$
b) Can not be determined
c) $\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]$
d) None is correct
(ix) Let $A=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ -1 & -1 & -1 & 4 \\ 2 & 2 & 2 & 2\end{array}\right]$ and let $T: R^{4} \rightarrow R^{3}$ such that $T(a, b, c, d)=A\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]$. Then Range($\left.\mathbf{T}\right)=$
a) $\operatorname{Span}\{(1,1,1,1),(-1,-1,-1,4)\}$
b) $\operatorname{Span}\{(1,5,0),(1,0,0)\}$
c) $\operatorname{Span}\{(1,-1,2),(1,4,2)\}$
d) None is correct
(x) Let A and T as above. One of the following points lies in the $\operatorname{Ker}(\mathrm{T})$:
a) $(1,1,0,0)$
b) $(0,1,-1,0)$
c) $(1,-1,0)$
d) $(1,0,1,0)$
(xi) Let A and T as above. One of the following points lies in the range of T :
a) $(5,-8,0,0)$
b) $(0,5,0)$
c) $(5,0,0)$
d) $(5,0,10)$
(xii) Let $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & 0 \\ -1 & -1 & 1\end{array}\right]$. The eigenvalues of A are :
a)1
b) $0,1,2$
c) 0,1
d) None is correct
(xiii) One of the following is a subspace of P_{4}
a) $\left\{a+b x+(2 b+a) x^{3} \mid a, b \in R\right\}$
b) $\left\{3+a x+(a+3) x^{2} \mid a \in R\right\}$
c) $\left\{a^{2}-b x \mid a, b \in R\right\}$
d) (a) and (c) are correct
(xiv) Let $T: P_{4} \rightarrow R^{3}$ such that $T(p(x))=\left(0, p^{\prime}(1), p^{\prime}(-1)\right)$. Then $\operatorname{Ker}(T)=$
a) $\operatorname{Span}\left\{1,10-3 x+x^{3}\right\}$
b) R
c) $\operatorname{span}\left\{2 x+2 x^{2}-6 x^{3}\right\}$
d) $\operatorname{Span}\left\{1-3 x+x^{3}\right\}$
(xv) Let T as above. Then $\operatorname{dim}(\operatorname{Range}(\mathrm{T}))=$
a) 1
b) 3
c) 0
d) 2
(xvi) Let $T: R^{3} \rightarrow P_{2}$ such that $T(1,0,0)=x, T(0,2,0)=2, T(0,1,1)=1+x$. Then $\mathrm{T}(3,2,4)=$
a) $2 x+3$
b) $7 x+2$
c) $3 x+2$
d) None is correct
(xvii) Let T as above. Then $\operatorname{Ker}(T)=$
a) $\operatorname{Span}\{(1,1,0)\}$
b) $\operatorname{Span}\{(1,0,0),(0,0,-1)\} \quad c) \operatorname{Span}\{(1,0,-1)\}$
None is correct
(xviii) Let A be 3×3 such that $A \quad \overrightarrow{2 R_{1}} \quad A_{1} \quad \xrightarrow[-3 R_{2}+R_{3} \rightarrow R_{3}]{ } \quad\left[\begin{array}{ccc}2 & 2 & 2 \\ -2 & 4 & -6 \\ -1 & -1 & 1\end{array}\right]$. Then $\operatorname{det}(A)=$
a) 48
b) 24
c) 12
d)None is correct
(xix) Let A as above. The solution to the system $A X=\left[\begin{array}{l}4 \\ 2 \\ 0\end{array}\right]$ is
a) $x_{1}=0, x_{2}=1, x_{3}=1$
b) $x_{1}=0, x_{2}=2, x_{3}=0$
c) $x_{1}=4, x_{2}=1, x_{3}=-1$
d) None is correct

QUESTION 2. (7 points)

Let $F=\operatorname{span}\{(1,0,0,1),(0,0,-1,1),(0,1,0,1)\}$ Find an orthogonal basis for F

QUESTION 3. (5 points) Find two matrices A, B such that each is 2×2 matrix and $\operatorname{det}(A)=\operatorname{det}(B)=-6$ but $\operatorname{det}(A+B)=-20$. If no such matrices exist, then explain

QUESTION 4. (12 points) Let $A=\left[\begin{array}{cccc}2 & 1 & 1 & -6 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ If possible find a diagonal matrix D and invertible matrix Q such that $A=Q D Q^{-1}$ (Do not calculate Q^{-1})

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

